

# Challenges of System Analyses for Sector coupling

- A first discussion along the three dimensions of sociotechnical problems

Bert Droste-Franke



- 1. Definition of Sector Coupling
- 2. Control ("factual" dimension) System (and Environment)
- 3. Change (temporal dimension) Positioning Analyses
- 4. Action (social dimension) Capturing behaviour
- 5. IQIB Approaches to deal with the Challenges
- 6. Conclusions



### **Definition of Sector Coupling**





#### **Definition of Sector Coupling**

Sector Coupling (Ausfelder et al. 2017 (project "Energiesysteme der Zukunft")):

- Connecting areas in an energy system which were not connected before
- Aims particularly on using electricity from renewable energies (especially wind power and photovoltaics) to a large extent in the sectors of heat and transport as well as in industry
- Conversion chains using hydrogen and synthetic gases play an important role



### **Control ("factual" dimension) – System (and Environment)**



#### **Challenges of energy system analyses**

- Analyses and underlying knowledge needs to fit to the purpose
  - Considering relevant technical, professional, scientific and local, experience based knowledge
  - Setting normative/non-epistemic elements right (e.g. preferences for "false-positives/negatives")
- Analyses need to follow a large spectrum of options, and acquainting decision makers with the underlying uncertainties
- Exploring the option space via Meta- and reflective analyses (transparency, implicit commitments, vary/exchange premises)
- Selecting those options which do not contradict major societal values and fit well with respect to evaluations by interest groups
- Concentrate on analysing decisive issues and correlations



#### Increase of intentions / elements and necessary perspectives need for multiple studies and meta-analyses

- Technologies: functionalities, process interlinkages, interfaces, ...
- **Economics**: costs, revenues, prices, markets, discount rates, labour, ...
- **Legal frame**: contracts, permissions, standards, ...
- **Society**: communication, co-operation, acceptance, ...
  - **Psychology**: perception, opinion formation, psychological
  - impacts, ...
- **Human-Physiologic:** physiological impacts, ...
- Biology: organisms, ressources, ...
- **Geo Sciences**: topology, ressource availability, weather, climate, ...
- **Chemistry**: substances, reactions, energy conversion, enthalpy, ...
- Physics: energy conversion, material characteristics, environmental characteristics, ...







#### Scientific experts dealing with real world problems: Caution needed in combining means and ends!

- Application to real world problems → helpful answers are not readily available →
  combining various general "truths" + practical demands → unavoidable incoherencies
- 2. Challenges selected by **urgency** → potential difficulty in tractability, non-laboratory conditions → much higher uncertainty
- 3. New expert scientific knowledge produced under close scrunity of the public → internal controversies, contrasting conceptual frameworks become visible → distrust may be caused
- 4. Bringing scientific generalisations to bare on specific practical problems → additional local knowledge/lay participation needed
- 5. Practical impact of science-based recommendations → appropriateness partly assessed by non-epistemic (normative) criteria which are not part of academic research (efficiency, economic benefit, environmental impacts, social issues)



### **Change (temporal dimension) – Positioning Analyses**



# Manifold time scales in balancing supply and demand need to be synchronised with time scales in other sectors





# Scales, resolution, and coverage also need to be synchronised in the spatial dimension

#### Individual decisions

## Regional restrictions and conflicts

National scenarios



Source: http://www.solarkataster-ahrweiler.de/karte



Source: https://www.enahrgie.de/szenarien/karte.html



Source: SRU 2010



### Action (social dimension) – Capturing behaviour



#### **Capturing social heterogeneity**

- Heterogeneity in actors needs to be considered:
  - various actor characteristics and resources,
  - various actor environments,
  - various purposes in energy supply, transport tasks etc.
- For modelling systems and for evaluating options



### **IQIB** Approaches to deal with the Challenges

#### Co-Design as deliberative-discursive connection of ends and means (Innovation-Lab and "Lab-Workflow") Innovations for schung & -beratung





- Identification of challenges / aims / targets (concrete ends) (with experts, interest groups, decision makers)
- Identification / development of relevant models, data, analyses
- 3. Identification and formulation of "experiments"/"scenarios" and adequate analyses/visualisierung of the option space
- First/reviewed results / answers, discussion of uncertainties/options/limits
- 5. Final presentation, publication and communication of results



nstitut für qualifizierende



#### Small groups for enabling mutual deliberative exchange

#### **Considering relevant expertise with respect to**

- Relevant content aspects
- Kind of knowledge: scientific and practical expertise

#### **Enabling problem-related reflexive discussions**

- Working problem-related
- Analysis of the whole option space including uncertainties
- Considering known substantial societal evaluations
- Mutual recognition of validity of arguments

#### Example "EnAHRgie": energy concept and sustainable land use

- "Innovation group" with scientists and practitioners + Scientific expert group
- Multiple participatory elements + knowledge management (s. www.enahrgie.de)

































# Transparency by interactively displaying important correlations with simplified models – Example: the Regio-Scenario-Tool





# Capturing social heterogeneity in action and evaluation, e.g. by agent-based modelling

# Modelling basic behaviour on micro level







#### **Conclusions**





- Challenges of system analyses increase with sector coupling :
  - Dimension 1 (Control):
    - Increase of disciplinary aspects through new purposes / intentions
    - Increase of elements in the systems
  - Dimension 2 (Change):
    - More framework conditions need to be considered
    - o Temporal (and spatial) settings need to be synchronised
  - Dimension 3 (Action):
    - Heterogeneity of actors needs to be considered in the analysis and for the evaluation
- Approaches need to be further developed and tested for sector coupling





#### **References:**

Droste-Franke B, Carrier M, Kaiser M, Schreurs M, Weber C, Ziesemer T (2015) Improving Energy Decisions. Towards Better Scientific Policy Advice for a Safe and Secure Future Energy System, Ethics of Science and TA, Volume 42, Springer, Berlin Regio-Scenario-Tool: www.enahrgie.de/tools

Globisch J, Droste-Franke B, Fohr G, Wassermann S (2019 to be published) Beratungsorientierte Verbindung von Empirie und sozialwissenschaftlichen Simulationsmodellen. TATuP 03/19

#### **Contact:**

Dr.-Ing. Bert Droste-Franke, Dipl.-Phys. IQIB - Institut für Innovationsforschung und -beratung

Wilhelmstr. 56, 53474 Bad Neuenahr-Ahrweiler Tel. +49 (0) 2641 973-324 Fax +49 (0) 2641 973-320 bert.droste-franke@iqib.de www.iqib.de



Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung



Innovationsgruppen Nachhaltiges Landmanagement