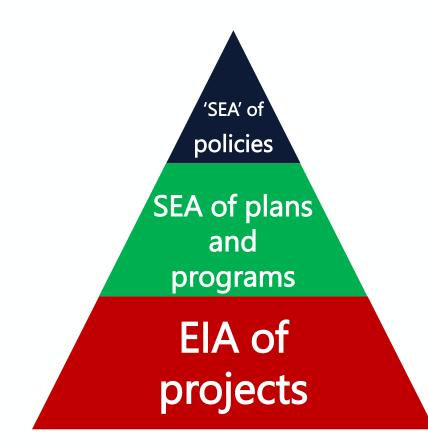
CYBER-PHYSICAL SYSTEMS & CLIMATE CHANGE AGENDA: **ISSUES & LINKAGES** FOR CONSIDERATION

Jiří Dusík Co-chair, IAIA Section Emerging Technologies

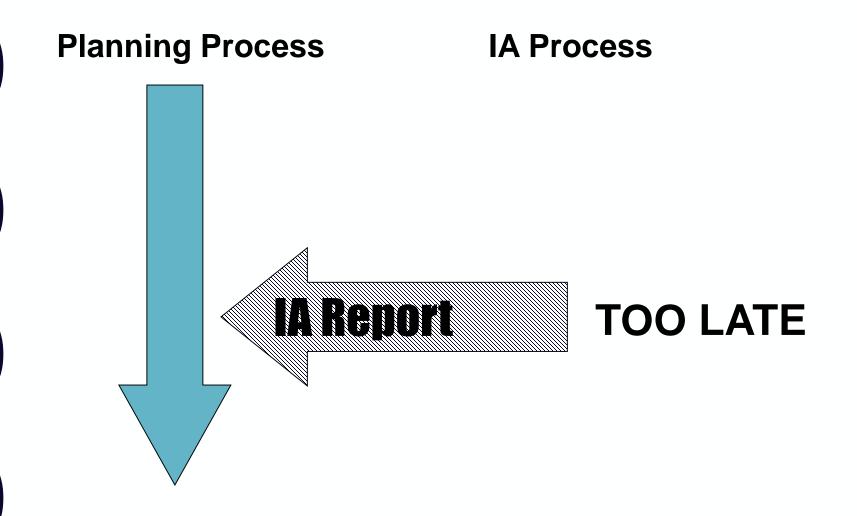

4th European Technology Assessment Conference 4-6 Nov 2019, Bratislava

OUTLINE

- Intro to impact assessment and its changing context
- Initial scoping of environmental (and social) impacts of cyber-physical systems uptake
- Questions and next steps

IMPACT ASSESSMENT

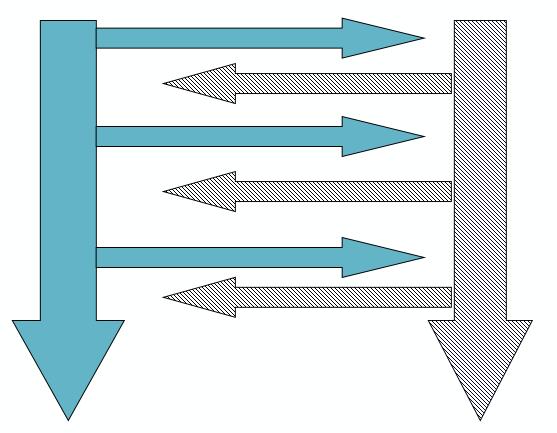
IAIA: IA is a process of identifying the future consequences of a current or proposed action



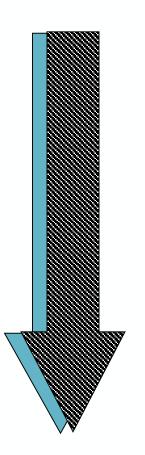
National Energy Policy (and its updates)

Regional energy plans, land-use plans, etc. (and their updates)

Power production projects, power grids, supporting infra, etc. (and their modifications)


EX-POST 'EX-ANTE' ASSESSMENT

PARALLEL ASSESSMENT


Planning Process

IA Process

FULLY INTEGRATED ASSESSMENT

Planning Process + IA Process indistinct

CHANGING CONTEXT

- Global mega-trends (climate change, biodiversity, land-use, resource use, etc.) shrink safe operating space for humanity
- driven through production and consumption patterns and decisions outside scope of traditional IA
- cyber-physical systems will shape future developments, yet escape IA obligations

EXPECTATIONS

- Industry 4.0 guarantees better products, more efficient production methods and bespoke industrial services
-virtual roof to satisfy the mass customization demands of society, reap the benefits of the internet revolution, and
-perhaps most importantly finally begin to take the word sustainability seriously and treat resources with more respect.

Questions regarding emerging technologies

China's Electric Buses Save More Diesel Than All Electric Cars Combined

Tesla and other electric cars are great for the environment. However, they pale in comparison to electric buses. According to a report from Bloomberg New Energy Finance (BNEF), electric buses will save...

STRATEGIC ENVIRONMENTAL AND SOCIAL ASSESSMENT - SCOPING

- Prepared with Thomas Fischer, Riki Therivel, Barry Sadler & Ivana Šarić in 2017-2018
- Initial overview
- basic features of emerging technologies, their uptake forecasts,
- potentially significant environmental implications & uncertainties
- summary: bit.ly/sesaauto0
- full paper: bit.ly/sesaauto1

SCOPING

- Screening & scoping presentation of proposal and identification of key concerns (possibly initial objective-led appraisals/assessments)
- Full assessment
 - Issue-based studies: baseline analyses, assessment of impacts & implications, consideration of alternatives & mitigation & enhancement measures)
 - Integrated presentation (cumulative & synergistic impacts, analysis of options, priority recommendations)
- Review by relevant authorities and public
- Decision-making
- IA follow-up (monitoring & mgmt., tiering, flanking measures, etc.)

APPROACH USED

Review of literature (no consultations):

- Additive manufacturing
- Industrial robotics
- Autonomous transport
- Internet of Things
- Artificial Intelligence

Env. impacts eventually clustered into basic categories:

- GHG emissions,
- non-GHG emissions,
- resource use (incl. waste) and
- ecosystem use

PLEASE FORGIVE POTENTIAL

ΝΑΙΥΕΤΥ

WE DID NOT KNOW ABOUT TECHNOLOGY ASSESSMENT PROCESSES WHEN WE STARTED

3D printing - recycled plastics

Source: Dezeen.com

ENV/CC BENEFITS

- more responsive modes of production
- decentralized production near consumers and reduces transport demands
- novel designs that can be more energy-efficient and functional
- easy prototyping and lower energy demand in low production runs
- less waste during the production proces

ENV/CC RISKS

- higher energy consumption in case of production of large quantities of products (depending on choice of 3D printers and their actual set-up)
- energy requirements for production of filamnets

- waste generated though overconsumption in case of affordable 3D products
- new chalenges for recycling of composite materials

Advanced industrial robotics: Robots and co-bots

Source: Inverse.com

ENV/CC BENEFITS

- automated **demand-responsive production**
- opportunities for digitized environmental monitoring and management and potentially also for environmental accounting systems
- reduced human exposure to potentially hazardous jobs
- use in smart recycling systems

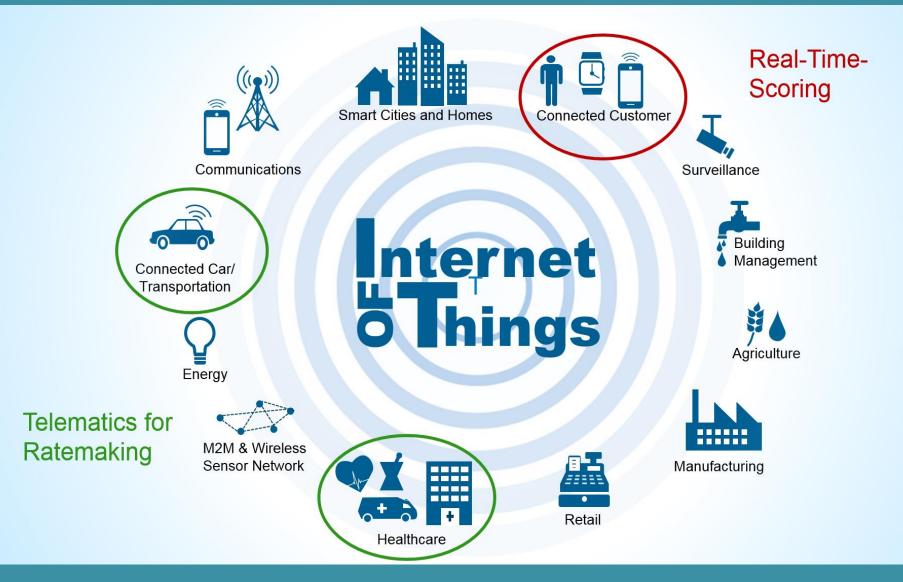
ENV/CC RISKS

 increased total energy intensity of operations (depending on energy efficiency and their cooling requirements)

 Increasing productivity and near-zero marginal cost of production may prompt business approches that encourage consumption (rebound effect)

Autonomous vehicles

Source: Wired.com


ENV/CC BENEFITS

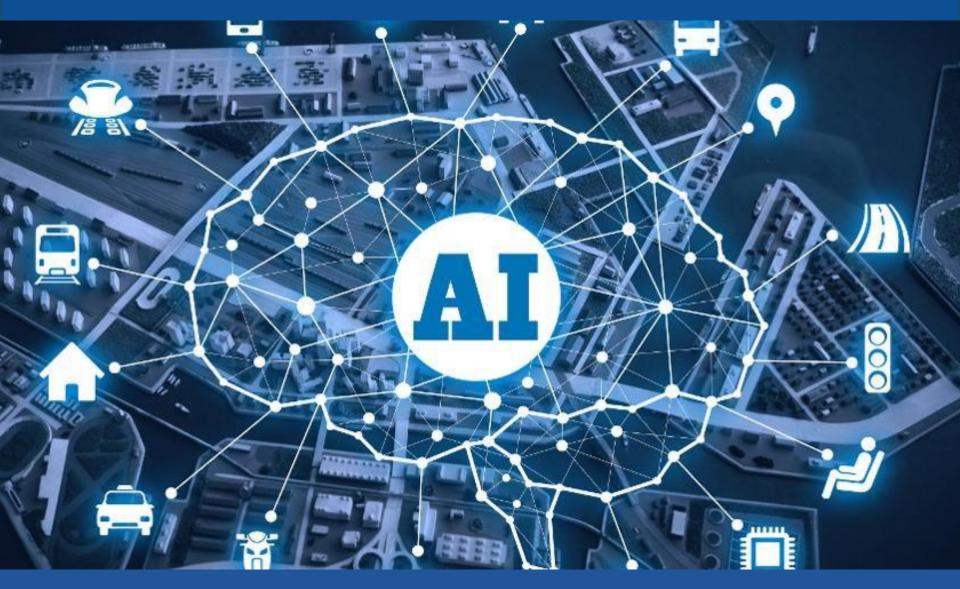
- improved road safety
- decreased air pollution and noise through electrification
- vehicle sharing and on-demand mobility
- **optimization of transport flows** through vehicleinfrastructure communication
- increased energy efficiency per km through route predictions

ENV/CC RISKS

- induced transport through alteration of travel behaviour (route choice and vehicle hours travelled)
- potentially negative impact on **public transport**
- urban sprawl
- new infrastructure requirements
- unknown implications for micromobility and slow mobility
- Energy & material demands associated with production and disposal of bateries (for EBVs)

Internet of Things

Picture courtesy: SAS.com


ENV/CC BENEFITS

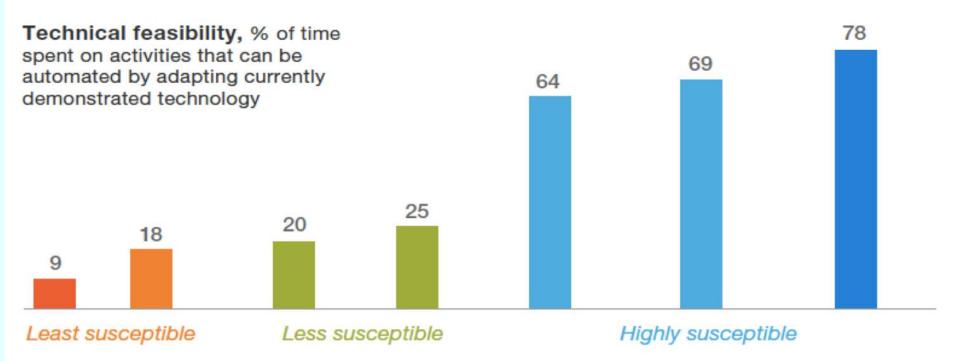
- Improved monitoring and management of energy use, resource use and environmental issues of concern
- Transparency in trading and supply chains and improved product tracking

ENV/CC RISKS

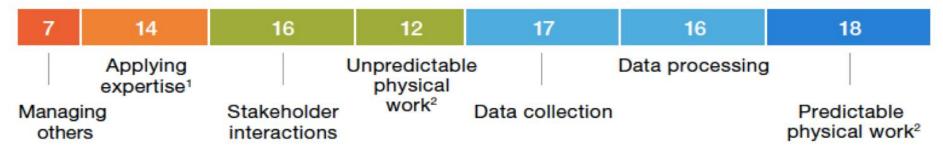
- Increased total energy demands of IoT devices, machine-machine interactions and transactions
- Changes in consumer choices (due to automated purchases or over-reliance on instructions given by IoT devices)
- Material and energy demands for production and maintenance of IoT components
- Increased electronic waste due to proliferation of electronic appliances and equipment

AI

Picture courtesy: houseofbots.com


ENV/CC BENEFITS

- Multi-source monitoring and verification of energy use, natural resource use and environmental trends at different scales
- Data-driven choices and system optimization (e.g. in energy and resource use)
- early detection of emerging patterns and risks, better forecasting and modelling of response measures


ENV/CC RISKS

- Total demand for electricity
- Improved insights into resources availability can facilitate stretch their utilisation to the limits. (overfishing by AI powered drones)
- Combined effects of competing or collaborating algorithms and their control

Shifts in jobs and livelihoods

Time spent in all US occupations, %

Source: McKinsey 2016

ENV/CC BENEFITS

Potential new green jobs in:

- climate change adaptation and mitigation,
- sustainable lifestyles, sustainable production and consumption,
- sustainable use of natural resources, and ecosystem restoration

ENV/CC RISKS

- Nature of new jobs unknown,
- Pressures on utilization of available natural resources (low-middle income settings)
- environmental pressures associated with expansion of the experience economy (generally)
- ??? green jobs and sustainable business models that actually reduce consumption depend on incentives

POTENTIAL OVERALL OUTCOMES

Key:

Best case scenario	GHG emissions	Non-GHG emissions	Resource use	Ecosystem use
3D printing & custom manufacturing				
Advanced industrial robotics				
Autonomous transport				
Internet of Things				
Artificial Intelligence				
Shifts in occupations and livelihoods				

Worst case scenario	GHG	Non-GHG	Resource	Ecosystem
	emissions	emissions	use	use
3D printing & custom manufacturing				
Advanced industrial robotics				
Autonomous transport				
Internet of Things				
Artificial Intelligence				
Shifts in occupations and livelihoods				

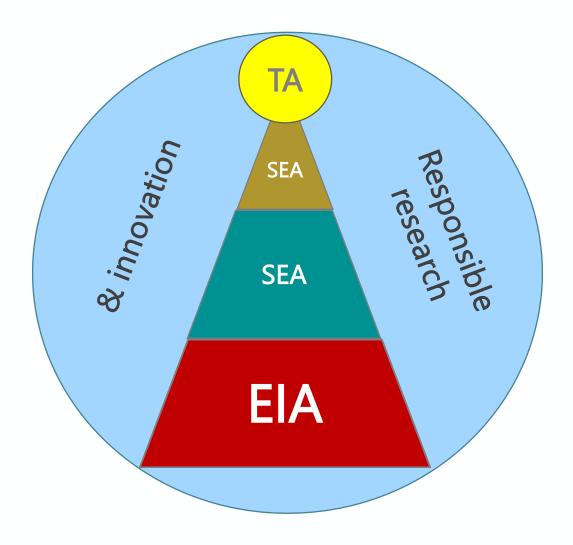
Significant	Moderate	Limited or no	Moderate	Significant
positive impact	positive impact	impact	adverse impact	adverse impact

Source: Dusik et al (2018)

OVERALL CONCLUSIONS

- There are **no upfront guarantees** that digitisation and automation will support env. sustainability
- Corporate studies assume best business practices and environmentally friendly consumer preferences
- No consideration of rebound effects caused efficiency and productivity
- Lower environmental footprint per production unit can be offset by increased consumption
- Limited boundaries of assessment disregard upstream and downstream impacts on environment and resource use

INTERIM RECOMMENDATIONS (2018)


- Link both agendas (climate change and new industries)
 consider not only benefits but also adverse side effects
- Invitation to join full-fledged SEAs but no clear policy process for this
- Use economic instruments (env/carbon taxes) to address externalities and support energy- and resource efficient innovations (Korinek & Stiglitz, 2017))
- Link digitisation with environmental management accounting (Burritt & Christ, 2016)

INTERIM RECOMMENDATIONS (2018)

- 4IR in pre-NEPA phase
- Expand IA to cover decision-making related to emerging technologies and/or
- Formalize TA processes and endow them with strong sustainability-oriented impact assessment elements

(Bond & Dusik, 2019)

POTENTIAL FUTURE IMPACT ASSESSMENT HIERARCHY?

THANK YOU FOR YOUR ATTENTION

Jiří Dusík

jiri.dusik@integracons.com

International Association for Impact Assessment

https://www.iaia.org/

https://conferences.iaia.org/2020/program.php